55 research outputs found

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    A Framework for Land Cover Classification Using Discrete Return LiDAR Data: Adopting Pseudo-Waveform and Hierarchical Segmentation

    Get PDF
    Acquiring current, accurate land-use information is critical for monitoring and understanding the impact of anthropogenic activities on natural environments.Remote sensing technologies are of increasing importance because of their capability to acquire information for large areas in a timely manner, enabling decision makers to be more effective in complex environments. Although optical imagery has demonstrated to be successful for land cover classification, active sensors, such as light detection and ranging (LiDAR), have distinct capabilities that can be exploited to improve classification results. However, utilization of LiDAR data for land cover classification has not been fully exploited. Moreover, spatial-spectral classification has recently gained significant attention since classification accuracy can be improved by extracting additional information from the neighboring pixels. Although spatial information has been widely used for spectral data, less attention has been given to LiDARdata. In this work, a new framework for land cover classification using discrete return LiDAR data is proposed. Pseudo-waveforms are generated from the LiDAR data and processed by hierarchical segmentation. Spatial featuresare extracted in a region-based way using a new unsupervised strategy for multiple pruning of the segmentation hierarchy. The proposed framework is validated experimentally on a real dataset acquired in an urban area. Better classification results are exhibited by the proposed framework compared to the cases in which basic LiDAR products such as digital surface model and intensity image are used. Moreover, the proposed region-based feature extraction strategy results in improved classification accuracies in comparison with a more traditional window-based approach

    Row selection in remote sensing from four-row plots of maize and sorghum based on repeatability and predictive modeling

    Get PDF
    Remote sensing enables the rapid assessment of many traits that provide valuable information to plant breeders throughout the growing season to improve genetic gain. These traits are often extracted from remote sensing data on a row segment (rows within a plot) basis enabling the quantitative assessment of any row-wise subset of plants in a plot, rather than a few individual representative plants, as is commonly done in field-based phenotyping. Nevertheless, which rows to include in analysis is still a matter of debate. The objective of this experiment was to evaluate row selection and plot trimming in field trials conducted using four-row plots with remote sensing traits extracted from RGB (red-green-blue), LiDAR (light detection and ranging), and VNIR (visible near infrared) hyperspectral data. Uncrewed aerial vehicle flights were conducted throughout the growing seasons of 2018 to 2021 with data collected on three years of a sorghum experiment and two years of a maize experiment. Traits were extracted from each plot based on all four row segments (RS) (RS1234), inner rows (RS23), outer rows (RS14), and individual rows (RS1, RS2, RS3, and RS4). Plot end trimming of 40 cm was an additional factor tested. Repeatability and predictive modeling of end-season yield were used to evaluate performance of these methodologies. Plot trimming was never shown to result in significantly different outcomes from non-trimmed plots. Significant differences were often observed based on differences in row selection. Plots with more row segments were often favorable for increasing repeatability, and excluding outer rows improved predictive modeling. These results support long-standing principles of experimental design in agronomy and should be considered in breeding programs that incorporate remote sensing

    Active Learning: Any Value for Classification of Remotely Sensed Data?

    Get PDF
    Active learning, which has a strong impact on processing data prior to the classification phase, is an active research area within the machine learning community, and is now being extended for remote sensing applications. To be effective, classification must rely on the most informative pixels, while the training set should be as compact as possible. Active learning heuristics provide capability to select unlabeled data that are the “most informative” and to obtain the respective labels, contributing to both goals. Characteristics of remotely sensed image data provide both challenges and opportunities to exploit the potential advantages of active learning. We present an overview of active learning methods, then review the latest techniques proposed to cope with the problem of interactive sampling of training pixels for classification of remotely sensed data with support vector machines (SVMs). We discuss remote sensing specific approaches dealing with multisource and spatially and time-varying data, and provide examples for high-dimensional hyperspectral imagery

    FeatureExplorer: Interactive Feature Selection and Exploration of Regression Models for Hyperspectral Images

    Full text link
    Feature selection is used in machine learning to improve predictions, decrease computation time, reduce noise, and tune models based on limited sample data. In this article, we present FeatureExplorer, a visual analytics system that supports the dynamic evaluation of regression models and importance of feature subsets through the interactive selection of features in high-dimensional feature spaces typical of hyperspectral images. The interactive system allows users to iteratively refine and diagnose the model by selecting features based on their domain knowledge, interchangeable (correlated) features, feature importance, and the resulting model performance.Comment: To appear in IEEE VIS 2019 Short Paper

    Detecting Small-Scale Topographic Changes and Relict Geomorphic Features on Barrier Islands Using SAR

    Get PDF
    The shapes and elevations of barrier islands may change dramatically over a short period of time during a storm. Coastal scientists and engineers, however, are currently unable to measure these changes occurring over an entire barrier island at once. This three-year project, which is funded by NASA and jointly conducted by the Bureau of Economic Geology and the Center for Space Research at The University of Texas at Austin, is designed to overcome this problem by developing the use of interferometry from airborne synthetic aperture radar (AIRSAR) to measure coastal topography and to detect storm-induced changes in topography. Surrogate measures of topography observed in multiband, fully polarimetric AIRSAR (This type of data are now referred to as POLSAR data.) are also being investigated. Digital elevation models (DEM) of Galveston Island and Bolivar Peninsula, Texas obtained with Topographic SAR (TOPSAR) are compared with measurements by Global Positioning System (GPS) ground surveys and electronic total station surveys. In addition to topographic mapping, this project is evaluating the use of POLSAR to detect old features such as storm scarps, storm channels, former tidal inlets, and beach ridges that have been obscured by vegetation, erosion, deposition, and artificial filling. We have also expanded the work from the original proposal to include the mapping of coastal wetland vegetation and depositional environments. Methods developed during this project will provide coastal geologists with an unprecedented tool for monitoring and understanding barrier island systems. This understanding will improve overall coastal management policies and will help reduce the effects of natural and man-induced coastal hazards. This report summarizes our accomplishments during the second year of the study. Also included is a discussion of our planned activities for year 3 and a revised budget

    View Generation for Multiview Maximum Disagreement Based Active Learning for Hyperspectral Image Classification

    No full text

    An Out-of-Sample Extension to Manifold Learning via Meta-Modeling

    No full text

    A Batch-Mode Regularized Multimetric Active Learning Framework for Classification of Hyperspectral Images

    No full text
    corecore